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Molecular Physics and Chemistry Applications of
Quantum Monte Carlo

P. J. Reynolds,' R. N. Barnett,” B. L. Hammond,> and W. A. Lester, Jr.

We discuss recent work with the diffusion quantum Monte Carlo (QMC)
method in its application to molecular systems. The formal correspondence of
the imaginary-time Schrédinger equation to a diffusion equation allows one to
calculate quantum mechanical expectation values as Monte Carlo averages over
an ensemble of random walks. We report work on atomic and molecular total
energies, as well as properties including electron affinities, binding energies,
reaction barriers, and moments of the electronic charge distribution. A brief dis-
cussion is given on how standard QMC must be modified for calculating
properties. Calculated energies and properties are presented for a number of
molecular systems, including He, F, F~, H,, N, and N,. Recent progress in
extending the basic QMC approach to the calculation of “analytic” (as opposed
to finite-difference) derivatives of the energy is presented, together with an H,
potential-energy curve obtained using analytic derivatives.

KEY WORDS: Diffusion quantum Monte Carlo; Schrodinger equation; fixed
nodes; atomic properties; molecular properties; total energies; analytic energy
derivatives; excited states; quadrupole moments; binding energies; electron
affinities.

1. INTRODUCTION

In the past few years, quantum mechanical Monte Carlo (QMC) methods
have begun to be applied in the domain of atomic and molecular
physics.""® Long in the realm of condensed-matter physics, and more
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recently nuclear and particle physics, Monte Carlo methods play an
indispensible role in treating multidimensional and hence many-body,
problems. For obtaining molecular properties, the Monte Carlo technique
is now showing itself to be equally useful, providing an approach com-
plementary to traditional ab initio electronic-structure calculations.

Atomic and molecular QMC applications have been primarily devoted
to calculations of ground-state energies. Workers have focused on
correlation energies"»?) as well as on stationary points on potential-energy
surfaces.®* In these studies, total energies have been obtained to
accuracies of better than 99.9 %. Though impressive by most standards, an
accuracy of 999% is only marginally useful for many chemical
applications, in which one seeks very small differences of large numbers.
Thus, better algorithms and faster computers are still needed. In Section 2
we review the use of QMC in calculations of ground-state energies, and
give an extension to excited states. Results are presented for a number of
atomic and molecular species. Section 3 describes the calculation of other
molecular properties, including the calculation of energy derivatives, which
are useful in the study of potential-energy surfaces.

2. QMC ENERGY CALCULATIONS

Theory

The QMC method of obtaining energies of atomic and molecular
systems has been described in detail elsewhere.""® The key point to note
here is that a simulation is performed in which an ensemble of random
walks (the coordinates of which, at any given time, represent a con-
figuration of the electrons) evolves to an equilibrium distribution. At any
time after equilibrium has been reached, the ensemble of configurations is a
random sample drawn from the probability distribution £, (R)=
% (R) (R), where the coordinate-vector R is the multidimensional vector
describing the full many-electron system. Here ¥ (R) is a simple trial wave
function used for importance sampling.® The function ¢(R) is the lowest-
energy eigenfunction of the Schrddinger equation, which is not orthogonal
to ¥;. Convergence to the lowest-energy state results from an essential
feature of the mapping of the Schrédinger equation into its diffusion
equation analog—that time in these two equations differs by a factor of i.
Thus, when a time-dependent molecular state vector is expanded in energy
eigenfunctions multiplied by exp(—iE/#), in imaginary time one obtains a
series in which only the lowest-energy term (i.e., ) survives at large ¢. If ¥,
is orthogonal to the exact lowest-energy state, one projects out the ground
state, and convergence will be to the next-lowest energy. In the fixed-node
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approximation, ' which we use to handle the fermion problem, the nodes
of ¥, are imposed on the solution ¢.

Although neither ¢ nor £, is known analytically, one can nevertheless
sample desired quantities from the equilibrium distribution f_ . Averages
taken with respect to f_, are known as mixed averages. For example, sam-
pling a quantity 4 in equilibrium gives (in the limit of large N) the average

(AYp, =¥l A16) (1)

where the Dirac notation being used has the normalization absorbed. The
correct expectation value of A for a state ¢ is {(§| 4 |4); however, in com-
puting any property for which 4 is an eigenstate, there is no difference
between these two averages. This foilows since the eigenvalue can be taken
out of the integral in (1). In particular, to compute the energy one samples
the quantity £, (R)= ¥7(R) H¥AR). Then

(E>p, =<$lH|¥r>=E, (2)
where E, is defined by Hé = E, 4.

Results

Table I reports the total energies obtained for a number of atomic and
molecular species. These energies are compared with Hartree—Fock results,
with the best variational calculations to date, and with exact or experimen-
tal values. QMC compares quite favorably with the other methods,
generally performing better than the best of the other calculations.

When studying excited states of a given symmetry, such as the He
states displayed in Table I, it is generally not possible to find a trial wave
function exactly orthogonal to all the lower-energy states of that symmetry.
This implies (cf. Eq.2) that convergence will ultimately be to the lowest-
energy state; however, the fixed-node approximation used to treat the fermi
problem is also of assistance in this context. In the fixed-node
approximation, the nodes of ¥, are used to divide R space into distinct
volume elements. The Schrodinger equation is solved separately in each of
these elements. This results in a solution of the Schrodinger equation with
added boundary conditions. Viewed this way, the fermi problem is handled
by forcing the generation of an antisymmetric state above the bose ground
state through the placement of nodes in the solution ¢. In like manner,
other excited states can be treated approximately by imposing additional
nodes. The accuracy of the approximation will depend on how well these
nodes are placed. Furthermore, if ¥ is not orthogonal to all lower energy
states, the approximation is no longer variational.
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Traditional ab initio methods generate excited-state wave functions
that generally contain the correct number and dimensionality of nodal sur-
faces. Thus, such wave functions are a good place to begin in choosing a
trial wave function ¥,. In our work on the excited states of He, we have
taken a sum of two Slater determinants for ¥, to obtain the required
spatial symmetry. Although the result for the (1s2s)'S state is not as
accurate as that for the 1s3s state, our calculated energy is nevertheless
within 0.66 kcal/mol of the experimental value. This is generally considered
chemical accuracy.

3. QMC MOLECULAR PROPERTIES

Energy-Related Quantities

Table IT reports the results obtained for a number of atomic and
molecular properties. The first four columns are properties that are derived
from the energy. Thus, for example, separate energy calculations of F and
F~ are performed, and the difference gives the electron affinity. Most of the
properties give impressively close agreement with experimental results. The
somewhat larger discrepency in the binding energy of N, is probably
attributable to the fixed-node approximation.

Another important quantity is the potential-energy surface of a
molecule, which is obtained in the Born—Oppenheimer approximation from
the solution of the electronic Schrodinger equation. Derivatives of the
energy with respect to nuclear coordinates are very useful in accurately
determining potential-energy surfaces including critical points, e.g., trans-
ition states and barriers, as well as in determining equilibrium
geometries,*") and (by finite difference or higher analytic derivatives) in
obtaining vibrational frequencies."?’ While advances over the past decade
in conventional ab initio approaches allow the direct calculation of
derivatives, only finite difference approaches have been implemented in
QMC." In principle there is no reason for this limitation. The energy
derivative with respect to a nuclear coordinate p, can be written'®

d{E>, /OE 104 104
Koy (05 (1) (10 oy
dp ap Jfo ¢ ap S ¢ ap Jeo
1 0¥, > < 1 6Y/T>
+{(———E — (= E 3
(T3 E) (5 Eon 0
Although ¢ ~'4/dp is unknown it is possible to sample it. The other terms

in (3) may be evaluated Astraightforwardly during the QMC simulation.
Rather than sampling ¢~'0¢/0p, as a first approximation we take
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Fig. 1. QMC potential-energy curve for H,. A Hermite polynomial fit to the energy and
derivatives provides a curve indistinguishable from exact to the resolution of the line. A
polynomial fit to the energy alone gives oscillatory behavior. The statistical error bars on the
points are smaller than the points themselves.

¢ 0d/dp=¥5;'0¥/dp. This turns out to be a good approximation even
when ¥ is only of moderate accuracy.

Using this approach we have performed calculations on H, at several
nuclear separations. Combining the QMC energies and derivatives at only
four points leads to the curve shown in Fig. 1. Compared to the exact curve
obtained by Kolos and Wolniewicz,">) our error is less than the thickness
of the line.

Other Expectation Values

For expectation values of quantities whose operators do not commute
with H, the mixed average of (1) is only approximate. One suspects that
the mixed average is in some sense “half-way” between the exact expec-
tation value (with respect to $) and the variational expectation value,
taken with respect to the trial wave function, ie., (¥, 4|¥ ;). Taken
literally, this implies that {(@|A4|¢)>=2(¥,|A4 |¢> (‘PTIAW’T) This
result can be formalized to first order in the difference § = ¢ — ¥ ;. It is,



1024 Reynolds, Barnett, Hammond, and Lester

however, difficult to know how significant it is to drop terms of order 2
Thus, it is desirable to be able to sample exactly from the distribution |12,
This can be done, although it entails some changes in the usual QMC
algorithm.

To sample from the distribution |$|2, the distribution f,, must be
weighted locally by #(R)/¥(R). This quantity is essentially the asymptotic
number of survivors of the local configuration R."$’ Thus, algorithmically,
one must follow each configuration into the future before computing any
averages. As a walk progresses, one must not only keep track of its
immediate decendents (which is easy), but also the descendents of its
decendents for many generations. At first sight, this seems to be a very dif-
ficult task. But the problem can be greatly simplified by visualizing the
branching process in time as a “tree.” The tree expands vertically in time ¢
and, as it branches, expands horizontally (or sometimes visualized as
azimuthally) in the @ direction. The location of each configuration in the
tree is uniquely described by the pair of values (6, ¢). In addition, we
require that all branches eminating from (6, ¢} have 8 in the range from 0
to 8+ 4. No other branches are allowed within this range. This is accom-
plished through a proper choice of 4. Following this procedure, the
required weighting factor for configuration / at some later time is simply
the number of configurations which lie between 8, and 6, + 4, at this later
time. Hence the only work required is to assign each configuration, at each
step in the walk, a value of 6 and 4 by the above scheme, and at a later
(asymptotic) time to count the number of walks falling in a particular
range. This relatively simple algorithm thus allows one to compute proper-
ties from the correct probability distribution. A more detailed discussed will
be published elsewhere.'”

Our results using the above algorithm to compute the electric
quadrupole moment of H, (see Table II), show that excellent results may
be obtained with QMC by sampling from the |¢§|? distribution. On the
other hand, the N, results use the approximate formula, and are also of
high quality. Thus it appears that one may not always need to use the more
complicated algorithm.

In summary, QMC is a powerful and accurate method of calculating
energies and properties of atomic and molecular systems. The results
presented in Tables I and II and Fig. 1 demonstrate its utility. In this paper
we have demonstrated several new capabilities of the method. We have also
pointed to areas requiring further development, such as exactly orthogonal
excited-state trial functions, and other approaches to excited states.
Interestingly, in our approach the fixed-node approximation, which is the
only obstacle to calculating exact ground-state energies, is the very tool
needed in the calculation of excited-state energies. We have also shown that
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QMC can be employed to calculate smooth potential-energy surfaces, and
near basis-set independent properties. These capabilities make QMC an
attractive method to use for atomic and molecular calculations.
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