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Molecular Physics and Chemistry Applications of 
Quantum Monte Carlo 

P. J. Reynolds,  1 R. N.  Barnett,  2 B. L. H a m m o n d ,  2 and W. A. Lester, Jr. 2 

We discuss recent work with the diffusion quantum Monte Carlo (QMC) 
method in its application to molecular systems. The formal correspondence of 
the imaginary-time Schr6dinger equation to a diffusion equation allows one to 
calculate quantum mechanical expectation values as Monte Carlo averages over 
an ensemble of random walks. We report work on atomic and molecular total 
energies, as well as properties including electron affinities, binding energies, 
reaction barriers, and moments of the electronic charge distribution. A brief dis- 
cussion is given on how standard QMC must be modified for calculating 
properties. Calculated energies and properties are presented for a number of 
molecular systems, including He, F, F , H> N, and N2. Recent progress in 
extending the basic QMC approach to the calculation of "analytic" (as opposed 
to finite-difference) derivatives of the energy is presented, together with an H2 
potential-energy curve obtained using analytic derivatives. 

KEY WORDS: Diffusion quantum Monte Carlo; Schr6dinger equation; fixed 
nodes; atomic properties; molecular properties; total energies; analytic energy 
derivatives; excited states; quadrupole moments; binding energies; electron 
affinities. 

1. I N T R O D U C T I O N  

In  the  pas t  few years ,  q u a n t u m  m e c h a n i c a l  M o n t e  C a r l o  ( Q M C )  m e t h o d s  

have  b e g u n  to  be  app l i ed  in the  d o m a i n  of  a t o m i c  a n d  m o l e c u l a r  

phys i c s .~  6) L o n g  in the  r e a l m  of  c o n d e n s e d - m a t t e r  physics ,  a n d  m o r e  
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recently nuclear and particle physics, Monte Carlo methods play an 
indispensible role in treating multidimensional and hence many-body, 
problems. For obtaining molecular properties, the Monte Carlo technique 
is now showing itself to be equally useful, providing an approach com- 
plementary to traditional ab initio electronic-structure calculations. 

Atomic and molecular QMC applications have been primarily devoted 
to calculations of ground-state energies. Workers have focused on 
correlation energies (1'2) as well as on stationary points on potential-energy 
surfaces. (3'4) In these studies, total energies have been obtained to 
accuracies of better than 99.9 %. Though impressive by most standards, an 
accuracy of 99.9% is only marginally useful for many chemical 
applications, in which one seeks very small differences of large numbers. 
Thus, better algorithms and faster computers are still needed. In Section 2 
we review the use of QMC in calculations of ground-state energies, and 
give an extension to excited states. Results are presented for a number of 
atomic and molecular species. Section 3 describes the calculation of other 
molecular properties, including the calculation of energy derivatives, which 
are useful in the study of potential-energy surfaces. 

2. Q M C  E N E R G Y  C A L C U L A T I O N S  

T h e o r y  

The QMC method of obtaining energies of atomic and molecular 
systems has been described in detail elsewhere. (1 8) The key point to note 
here is that a simulation is performed in which an ensemble of random 
walks (the coordinates of which, at any given time, represent a con- 
figuration of the electrons) evolves to an equilibrium distribution. At any 
time after equilibrium has been reached, the ensemble of configurations is a 
random sample drawn from the probability distribution foo(R)= 
~r(R) q~(R), where the coordinate-vector R is the multidimensional vector 
describing the full many-electron system. Here gtr(R ) is a simple trial wave 
function used for importance sampling. (9) The function q~(R) is the lowest- 
energy eigenfunction of the Schr6dinger equation, which is not orthogonal 
to gt r. Convergence to the lowest-energy state results from an essential 
feature of the mapping of the Schr6dinger equation into its diffusion 
equation analog--that time in these two equations differs by a factor of i. 
Thus, when a time-dependent molecular state vector is expanded in energy 
eigenfunctions multiplied by exp(-  iEt/h), in imaginary time one obtains a 
series in which only the lowest-energy term (i.e., q~) survives at large t. If gJr 
is orthogonal to the exact lowest-energy state, one projects out the ground 
state, and convergence will be to the next-lowest energy. In the fixed-node 
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approximation, (t~ which we use to handle the fermion problem, the nodes 
of gt T are imposed on the solution ~. 

Although neither q~ nor fo~ is known analytically, one can nevertheless 
sample desired quantities from the equilibrium distribution f ~ .  Averages 
taken with respect to f ~  are known as mixed averages. For example, sam- 
pling a quantity A in equilibrium gives (in the limit of large N) the average 

( A ) f c o  = ( ~T'/T[ A [q~) (1) 

where the Dirac notation being used has the normalization absorbed. The 
correct expectation value of A for a state ~ is (~[ A [~); however, in com- 
puting any property for which d is an eigenstate, there is no difference 
between these two averages. This follows since the eigenvalue can be taken 
out of the integral in (1). In particular, to compute the energy one samples 
the quantity EL(R) = ~ J T I ( R )  HTtr(R). Then 

(E)r~ = (71 HI ~eT} = Eo (2) 

where f7 o is defined by HG~ = Eo ~. 

Results 

Table I reports the total energies obtained for a number of atomic and 
molecular species. These energies are compared with Hartree-Fock results, 
with the best variational calculations to date, and with exact or experimen- 
tal values. QMC compares quite favorably with the other methods, 
generally performing better than the best of the other calculations. 

When studying excited states of a given symmetry, such as the He 
states displayed in Table I, it is generally not possible to find a trial wave 
function exactly orthogonal to all the lower-energy states of that symmetry. 
This implies (cf. Eq. 2) that convergence will ultimately be to the lowest- 
energy state; however, the fixed-node approximation used to treat the fermi 
problem is also of assistance in this context. In the fixed-node 
approximation, the nodes of gt r are used to divide R space into distinct 
volume elements. The Schr6dinger equation is solved separately in each of 
these elements. This results in a solution of the Schr6dinger equation with 
added boundary conditions. Viewed this way, the fermi problem is handled 
by forcing the generation of an antisymmetric state above the bose ground 
state through the placement of nodes in the solution q~. In like manner, 
other excited states can be treated approximately by imposing additional 
nodes. The accuracy of the approximation will depend on how well these 
nodes are placed. Furthermore, if gt r is not orthogonal to all lower energy 
states, the approximation is no longer variational. 
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Traditional ab initio methods generate excited-state wave functions 
that generally contain the correct number and dimensionality of nodal sur- 
faces. Thus, such wave functions are a good place to begin in choosing a 
trial wave function ~r-  In our work on the excited states of He, we have 
taken a sum of two Slater determinants for ~v  to obtain the required 
spatial symmetry. Although the result for the (ls2s)~S state is not as 
accurate as that for the ls3s state, our calculated energy is nevertheless 
within 0.66 kcal/mol of the experimental value. This is generally considered 
chemical accuracy. 

3. Q M C  M O L E C U L A R  PROPERTIES 

Energy-Related Quant i t ies  

Table II reports the results obtained for a number of atomic and 
molecular properties. The first four columns are properties that are derived 
from the energy. Thus, for example, separate energy calculations of F and 
F are performed, and the difference gives the electron affinity. Most of the 
properties give impressively close agreement with experimental results. The 
somewhat larger discrepency in the binding energy of N 2 is probably 
attributable to the fixed-node approximation. 

Another important quantity is the potential-energy surface of a 
molecule, which is obtained in the Born-Oppenheimer approximation from 
the solution of the electronic Schr6dinger equation. Derivatives of the 
energy with respect to nuclear coordinates are very useful in accurately 
determining potential-energy surfaces including critical points, e.g., trans- 
ition states and barriers, as well as in determining equilibrium 
geometries, (11) and (by finite difference or higher analytic derivatives) in 
obtaining vibrational frequencies. ~ While advances over the past decade 
in conventional ab initio approaches allow the direct calculation of 
derivatives, only finite difference approaches have been implemented in 
QMC. (13) In principle there is no reason for this limitation. The energy 
derivative with respect to a nuclear coordinate p, can be written (~4) 

d(E):| I1 ~?~ ~ \ _ / 1 0 ~ \  (EL):o ~ 

+ ~T ?p /s~ ~ ~P/s~ <EL}s~ (3) 

Although ~-1(?~/~p is unknown it is possible to sample it. The other terms 
in (3) may be evaluated straightforwardly during the QMC simulation. 
Rather than sampling ~-~O~/3p, as a first approximation we take 



T
a

b
le

 
II

. 
A

to
m

ic
 

a
n

d
 

M
o

le
c

u
la

r 
P

ro
p

e
rt

ie
s

 
fo

r 
a 

N
u

m
b

e
r 

o
f 

S
p

e
c

ie
s

 a
 

S
ys

te
m

 
F 

N
 2

 
H

 +
 H

 2
 

C
H

2 
H

 2
 

N
 2

 
(p

ro
pe

rt
y:

 u
ni

ts
) 

(A
: 

eV
) 

(E
B

: 
k

ca
l/

m
o

l)
 

(b
ar

ri
er

: 
k

ca
l/

m
o

l)
 

(T
~

: 
k

ca
l/

m
o

l)
 

(Q
: 

es
u

. 
cm

 2
 • 

10
 

26
) 

(Q
: 

es
u

. 
cm

 2
 • 

10
 -2

6)
 

H
ar

tr
e~

F
o

ck
 

1.
36

 b 
12

0.
5 

J 
50

.1
 i 

25
.4

 m
 

0.
66

 q
 

--
 1

.2
9 

s 

B
es

t 
v

ar
ia

ti
o

n
al

 
3.

18
" 

21
2.

9 
g 

9.
8&

 
9.

9"
 

0.
66

 q
 

--
 1

.2
9 

~ 

Q
M

C
 

3.
45

(1
1)

 a
 

20
7.

4(
2.

4)
 

9.
70

(1
3)

 k
 

9.
5(

2.
3)

 ~
 

0.
61

(3
) 

-1
.4

(2
) 

E
x

p
er

im
en

ta
l 

or
 e

xa
ct

 
3.

40
 ~

 
22

8.
4 

h 
9.

65
(8

) t
 

9.
55

 p
 

0.
61

 r 
- 

1.
4(

1)
 s 

In
 g

en
er

al
, 

Q
M

C
 

ag
re

es
 w

el
l 

w
it

h
 t

he
 b

es
t 

ca
lc

u
la

ti
o

n
s 

p
er

fo
rm

ed
, 

as
 w

el
l 

as
 w

it
h

 e
x

p
er

im
en

t.
 T

h
e 

p
ro

p
er

ti
es

 t
re

at
ed

 a
re

 t
he

 e
le

ct
ro

n
 a

ff
in

it
y 

A
 

of
 F

, 
th

e 
b

in
d

in
g

 e
ne

rg
y 

E
B

 o
f 

N
2,

 t
he

 b
ar

ri
er

 t
o 

ch
em

ic
al

 r
ea

ct
io

n
 f

or
 H

 +
 H

z 
ex

ch
an

g
e,

 t
he

 s
in

g
le

t-
tr

ip
le

t 
en

er
g

y
 d

if
fe

re
nc

e 
T

~ 
in

 C
H

2
, 

an
d

 t
he

 

el
ec

tr
ic

 q
u

ad
ru

p
o

le
 m

o
m

en
t 

Q
 

of
 H

 2
 a

n
d

 N
2.

 

b 
R

ef
. 

29
. 

zo
 

" 
R

ef
. 

30
. 

,~
 

d 
R

ef
. 

31
. 

o 
e 

R
ec

o
m

m
en

d
ed

 e
x

p
er

im
en

ta
l 

va
lu

e 
of

 R
ef

. 
32

. 
~.

 
t~

 
/ 

F
ro

m
 c

o
m

b
in

in
g

 t
he

 v
al

ue
s 

fo
r 

N
 

an
d

 N
 2

 i
n 

R
ef

s.
 2

2 
an

d
 

25
, 

re
sp

ec
ti

ve
ly

. 
g 

R
ef

. 
23

. 
m

 

h 
E

x
p

er
im

en
ta

l 
va

lu
e 

fr
om

 
R

ef
. 

33
. 

3 

i 
D

er
iv

ed
 f

ro
m

 
R

ef
. 

21
. 

ea
e 

J 
R

ef
. 

34
. 

-r
 

k 
B

ar
ne

tt
 e

t 
al

. 
in

 R
ef

. 
3.

 
~'

 

t 
T

hi
s 

is
 a

n 
ex

ac
t 

ca
lc

u
la

ti
o

n
 v

ia
 "

re
le

as
ed

-n
o

d
e"

 Q
M

C
, 

in
 R

ef
. 

4.
 

3 3 
" 

F
ro

m
 c

o
m

b
in

in
g

 t
he

 S
C

F
 r

es
ul

ts
 i

n 
R

ef
. 

35
. 

o 
" 

R
ef

. 
36

. 
~.

 

~ 
F

ro
m

 c
o

m
b

in
in

g
 t

he
 r

es
ul

ts
 o

f 
tw

o
 t

ri
al

 w
av

e 
fu

nc
ti

on
s 

w
it

h
 t

he
 s

am
e 

no
de

s,
 

an
d

 h
en

ce
 t

he
 s

am
e 

fi
x

ed
-n

o
d

e 
bi

as
, 

in
 R

ef
. 

5.
 

P 
E

x
p

er
im

en
ta

l 
w

o
rk

 o
f 

R
ef

. 
37

 c
o

rr
ec

te
d

 f
or

 z
er

o
-p

o
in

t 
an

d
 r

el
at

iv
is

ti
c 

ef
fe

ct
s.

 F
o

r 
de

ta
il

s 
se

e 
th

e 
d

is
cu

ss
io

n
 i

n 
R

ef
. 

5.
 

~.
 

q 
R

ef
. 

38
. 

r"
 

r 
r 

R
ef

. 
15

. 

�9
 

~ 
R

ec
o

m
m

en
d

ed
 e

x
p

er
im

en
ta

l 
va

lu
e 

of
 R

ef
. 

39
. 

-',
 



O-  

- 0 . 2  - 

- 0 . 4  - 

-0.6 - 

- 0 . 6  - 

- 1 -  

-1.2 0.15 I i i 
1 1 . 5  B 

R (bohr) 

M o l e c u l a r  Physics and C h e m i s t r y  A p p l i c a t i o n s  1 0 2 3  

Fig. 1. Q M C  potential-energy curve for t t  2. A Hermite polynomial fit to the energy and 
derivatives provides a curve indistinguishable from exact to the resolution of the line. A 
polynomial fit to the energy alone gives oscillatory behavior. The statistical error bars on the 
points are smaller than the points themselves. 

1~?~/3p= gtrl~T/O p. This turns out to be a good approximation even 
when ~u T is only of moderate accuracy. 

Using this approach we have performed calculations on H2 at several 
nuclear separations. Combining the QMC energies and derivatives at only 
four points leads to the curve shown in Fig. 1. Compared to the exact curve 
obtained by Kolos and Wolniewicz, (15] our error is less than the thickness 
of the line. 

Other Expectation Values 

For expectation values of quantities whose operators do not commute 
with H, the mixed average of (1) is only approximate. One suspects that 
the mixed average is in some sense "half-way" between the exact expec- 
tation value (with respect to ~) and the variational expectation value, 
taken with respect to the trial wave function, i.e., (g t r !A I~T)" Taken 
literally, this implies that <~[A ]q~> = 2< ~T[ A [q~> -- < ~r[ A [ gtr>. This 
result can be formalized to first order in the difference 6 = q~- gtT.(s'~4) It is, 
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however, difficult to know how significant it is to drop terms of order 6 2 . 
Thus, it is desirable to be able to sample exactly from the distribution [~f 2. 
This can be done, although it entails some changes in the usual QMC 
algorithm. 

To sample from the distribution I~12, the distribution fo~ must be 
weighted locally by d(R)/g~r(R). This quantity is essentially the asymptotic 
number of survivors of the local configuration R. (16) Thus, algorithmically, 
one must follow each configuration into the future before computing any 
averages. As a walk progresses, one must not only keep track of its 
immediate decendents (which is easy), but also the descendents of its 
decendents for many generations. At first sight, this seems to be a very dif- 
ficult task. But the problem can be greatly simplified by visualizing the 
branching process in time as a "tree." The tree expands vertically in time t 
and, as it branches, expands horizontally (or sometimes visualized as 
azimuthally) in the 0 direction. The location of each configuration in the 
tree is uniquely described by the pair of values (0, t). In addition, we 
require that all branches eminating from (0, t) have 0 in the range from 0 
to 0 + A. No other branches are allowed within this range. This is accom- 
plished through a proper choice of A. Following this procedure, the 
required weighting factor for configuration i at some later time is simply 
the number of configurations which lie between 0i and 0i + Ai at this later 
time. Hence the only work required is to assign each configuration, at each 
step in the walk, a value of 0 and A by the above scheme, and at a later 
(asymptotic) time to count the number of walks falling in a particular 
range. This relatively simple algorithm thus allows one to compute proper- 
ties from the correct probability distribution. A more detailed discussed will 
be published elsewhere. (17) 

Our results using the above algorithm to compute the electric 
quadrupole moment of H2 (see Table II), show that excellent results may 
be obtained with QMC by sampling from the ]q~j2 distribution. On the 
other hand, the N2 results use the approximate formula, and are also of 
high quality. Thus it appears that one may not always need to use the more 
complicated algorithm. 

In summary, QMC is a powerful and accurate method of calculating 
energies and properties of atomic and molecular systems. The results 
presented in Tables I and II and Fig. 1 demonstrate its utility. In this paper 
we have demonstrated several new capabilities of the method. We have also 
pointed to areas requiring further development, such as exactly orthogonal 
excited-state trial functions, and other approaches to excited states. 
Interestingly, in our approach the fixed-node approximation, which is the 
only obstacle to calculating exact ground-state energies, is the very tool 
needed in the calculation of excited-state energies. We have also shown that 
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QMC can be employed to calculate smooth potential-energy surfaces, and 
near basis-set independent properties. These capabilities make QMC an 
attractive method to use for atomic and molecular calculations. 
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